Let E_1 and E_2 be two independent events such that $P(E_1) = P_1$ and $P(E_2) = P_2$. Describe in words of the events whose probabilities are (i) P_1P_2 (ii) $(1 - P_1)P_2$

(iii)
$$1 - (1 - P_1) (1 - P_2)$$
 (iv) $P_1 + P_2 - 2P_1P_2$
 $P(E_1) = P_1 \text{ and } P(E_2) = P_2$
(i) $P_1P_2 \Rightarrow P(E_1) \cdot P(E_2) = P(E_1 \cap E_2)$

So, E_1 and E_2 occur. ii) $(1 - P_1) P_2 = P(E_1)' \cdot P(E_2) = P(E_1' \cap E_2)$

$$E_1$$
 does not occur but E_2 occurs.
 $(1 - P_1)(1 - P_2) = 1 - P(E_1)P(E_2)' = 1 - P(E_1' \cap E_2')$
 $= 1 - [1 - P(E_1 \cup E_2)] = P(E_1 \cup E_2)$

So. E_1 does not occur but E_2 occurs. (ii) $1 - (1 - P_1)(1 - P_2) = 1 - P(E_1)P(E_2)' = 1 - P(E_1' \cap E_2')$

So,
$$E_1$$
 does not occur but E_2 occurs.

$$1 - (1 - P_1)(1 - P_2) = 1 - P(E_1)P(E_2)' = 1 - P(E_1' \cap E_2')$$

$$= 1 - [1 - P(E_1 \cup E_2)] = P(E_1 \cup E_2)$$
So, either E_1 or E_2 or both E_1 and E_2 occurs.

$$= 1 - [1 - P(E_1)P(E_2)] = 1 - P(E_1)P(E_2)$$

$$= 1 - [1 - P(E_1 \cup E_2)] = P(E_1 \cup E_2)$$
So, either E_1 or E_2 or both E_1 and E_2 occurs.
$$E_1 + P_2 - 2PP_3 = P(E_1) + P(E_2) - 2P(E_1) \cdot P(E_2)$$

either
$$E_1$$
 or E_2 or both E_1 and E_2 occurs.
• $P_2 - 2P_1P_2 = P(E_1) + P(E_2) - 2P(E_1) \cdot P(E_2)$

v) $P_1 + P_2 - 2P_1P_2 = P(E_1) + P(E_2) - 2P(E_1) \cdot P(E_2)$ $= P(E_1) + P(E_2) - 2P(E_1 \cap E_2)$

 $= P(E_1 \cup E_2) - P(E_1 \cap E_2)$

So, either E_1 or E_2 occurs but not both.